Issues in Large Online Image Databases Jim Gray Microsoft Research National Cancer Institute Workshop on Cancer Imaging Informatics Gray@Microsoft.com http://research.microsoft.com/~gray/talks 26 Sept 2002 # Some Background - "Where you stand depends on where you sit." Rufus Miles - I look for BIG databases, and try to put them online (inexpensively). - I put EVERYTHING in the database - I operate these things so I care about - Operations cost - Maintenance cost - "people" cost - Emergency phone calls: oops! we deleted the DB. #### A sense of scale - TerraServer - Sloan Digital Sky Survey - BaBar / CERN LHC (interesting) ``` Kilo 10^3 Mega 10^6 Giga 10^9 Tera 10^{12} today, we are here Peta 10^{15} the future Exa 10^{18} ``` #### **TerraServer** ## TerraServer.net - A photo of the United States - 1 meter resolution (photographic/topographic) - USGS data - Some demographic data (BestPlaces.net) - Home sales data - Linked to Encarta Encyclopedia - 15 TB raw, 6 TB cooked (grows 10GB/w) - Point, Pan, zoom interface - Among top 1,000 websites - 40k visitors/day - 4M queries/day - 1.2 B page views (in 3 years) - All in an SQL database | The temperature breats | | | | Antho | |--|------|------|-------------------|---| | to Translating, Ed. 4 reasonable to 1999 1 | 100 | | - | Francisco
Services
Services
Services
Services | | | 100 | 7 | | | | Management Comment of the | | . 20 | 100
100
100 | Č | | | | | _ | nin | | | - 15 | 125 | 12 | 三 | | And the second s | 1 | 17 | 12 | | #### TerraServer Becomes a Web Service TerraServer.net -> TerraService.Net - Web server is for people. - Web Service is for programs - The end of screen scraping - No faking a URL: pass real parameters. - No parsing the answer: data formatted into your address space. - Hundreds of users but a specific example: - US Department of Agriculture And now.. 4 slides from the "customer" who built a portal using TerraService ## **Data Gateway Functional** **ITC - Fort Collins, Colorado** **Overview** **NCGC - Fort Worth, Texas** #### Order Process #### Lighthouse returns confirmation # USDA #### Soil Interpretation Map #### Some General Comments - Image - tiles and Pyramid - Cost of storage: 2k\$/TB - Cost of communication: 2k\$/TB - Time for communication: - Gurus: 4 hours/TB - Rest of us: 12 days/TB - Sneakernet # Image Databases are BIG! - To find BIG databases you go to image/pixel - 2B transactions/day in US: 100GB/day, 4TB/y - Library of Congress:25 TB of print, 1PB of movies (100K) - Photo of US (1 meter): 10Tera-Pixel - Picture of the sky: ~ 40 TeraPixel - Each minute/hour/day... a new picture # Serving BIG images - Break into tiles (compressed): - 10KB for modems - 1MB for LANs - Mosaic the tiles for pan, crop - Store image pyramid for zoom - -2x zoom only adds 33% overhead $1 + \frac{1}{4} + \frac{1}{16} + \dots$ - Use a spatial index to cluster & find objects #### TerraServer Lessons Learned - Hardware is 5 9's (with clustering) - Software is 5 9's (with clustering) - Admin is 4 9's (offline maintenance) - Network is 3 9's (mistakes, environment) - Simple designs are best - 10 TB DB is management limit 1 PB = 100 x 10 TB DB this is 100x better than 5 years ago. (yahoo!, HotMail are 300TB, Google! Is 2PB) - Minimize use of tape - -Backup to disk (snapshots) - -Portable disk TBs ## \$2.4 K, 1 TByte Sneakernet Disk Brick Box has 3GT: 2 Ghz processor 1 GB ram 1 Gbps ethernet 1 TB disk (7x150GB) Windows + SQL 2.5k\$ today 150KBps IO bandwidth In 10 years: 100x more capacity 24\$/TB UPS overnite: 12 MBps (100Mbps). To Europe/Japan: 3 MBps Cheaper than tape # Real Networking - Bandwidth for 1 Gbps "stunt" cost 400k\$/month - ~ 200\$/Mbps/m (at each end + hardware + admin) - Price not improving very fast - Doesn't include operations / local hardware costs - Admin... costs more ~1\$/GB to 10\$/GB - Challenge: Go home and FTP from a "fast"server - The Guru Gap: FermiLab <-> JHU - Both "well connected" - vBNS, NGI, Internet2, Abilene,.... - Actual desktop-to-desktop ~ 100KBps - 12 days/TB (but it crashes first). - The reality: to move 10GB, mail it! TeraScale Sneakernet © ### Szalay's Law: ## The utility of N comparable datasets is N^2 - Metcalf's law applies to telephones, fax, Internet. - Szalay argues as follows: Each new dataset gives new information 2-way combinations give new information. - Example: Combine these 3 datasets - (ID, zip code) - (ID, birth day) - (ID, height) - Other example: quark star: Chandra Xray + Hubble optical, +600 year old records.. Drake, J. J. et al. Is RX J185635-375 a Quark Star?. *Preprint*, (2002). X-ray, optical, infrared, and radio views of the nearby Crab Nebula, which is now in a state of chaotic expansion after a supernova explosion first sighted in 1054 A.D. by Chinese Astronomers. #### What's needed? # SkyServer SkyServer.SDSS.org - Like the TerraServer, but looking the other way: a picture of ¼ of the universe - Pixels + Data Mining - Astronomers get about 400 attributes for each "object" - Get Spectrograms for 1% of the objects # Why Astronomy Data? - There is lots of it - High dimensional - Spatial - temporal - Great sandbox for data mining algorithms - Can share cross company - University researchers - Great way to teach both Astronomy and Computational Science Want to federate many instruments # Why Astronomy Data? - ·It has no commercial value - –No privacy concerns - –Can freely share results with others - -Great for experimenting with algorithms - •It is real and well documented - -High-dimensional data (with confidence intervals) - -Spatial data - -Temporal data - Many different instruments from many different places and many different times - Federation is a goal - The questions are interesting - -How did the universe form? - There is a lot of it (petabytes) # World Wide Telescope Virtual Observatory http://www.astro.caltech.edu/nvoconf/ http://www.voforum.org/ - Premise: Most data is (or could be online) - So, the Internet is the world's best telescope: - It has data on every part of the sky - In every measured spectral band: optical, x-ray radio... - As deep as the best instruments (2 years ago - It is up when you are up. The "seeing" is always great (no working at night, no clouds no moons no...). - It's a smart telescope: links objects and data to literature on them. #### Data Federations of Web Services - Massive datasets live near their owners: - Near the instrument's software pipeline - Near the applications - Near data knowledge and curation - Super Computer centers become Super Data Centers - Each Archive publishes a web service - Schema: documents the data - Methods on objects (queries) - Scientists get "personalized" extracts - Uniform access to multiple Archives ederation - A common global schema # Grid and Web Services Synergy - I believe the Grid will be many web services share data (computrons are free) - IETF standards Provide - Naming - Authorization / Security / Privacy - Distributed Objects Discovery, Definition, Invocation, Object Model - Higher level services: workflow, transactions, DB,... # Web Services: The Key? #### Web SERVER: - Given a url + parameters - Returns a web page (often dynamic) #### Web SERVICE: - Given a XML document (soap msg) - Returns an XML document - Tools make this look like an RPC. - F(x,y,z) returns (u, v, w) - Distributed objects for the web. - + naming, discovery, security,... - Internet-scale distributed computing # Virtual Observatory Challenges #### Size: multi-Petabyte 40,000 square degrees is 2 Trillion pixels One band (at 1 sq arcsec) 4 Terabytes Multi-wavelength 10-100 Terabytes - Time dimension >> 10 Petabytes Need auto parallelism tools #### Unsolved MetaData problem - Hard to publish data & programs - How to federate Archives - Hard to find/understand data & programs #### Current tools inadequate - new analysis & visualization tools - Data Federation is problematic #### Transition to the new astronomy Sociological issues # SkyQuery: a prototype - Defining Astronomy Objects and Methods. - Federated 3 Web Services (fermilab/sdss, jhu/first, Cal Tech/dposs) multi-survey cross-match Distributed query optimization (T. Malik, T. Budavari, Alex Szalay @ JHU) # http://skyquery.net/ - My first web service (cutout + annotated SDSS images) Online - http://SkyService.jhu.pha.edu/SdssCutout - WWT is a great Web Services (.Net) application - Federating heterogeneous data sources. - Cooperating organizations - An Information At Your Fingertips challenge. - Linux + Windows environment # SkyNode Basic Web Services - Metadata information about resources - Waveband - Sky coverage - Translation of names to universal dictionary (UCD) - Simple search patterns on the resources - Cone Search - Image mosaic - Unit conversions - Simple filtering, counting, histogramming - On-the-fly recalibrations # Portals: Higher Level Services - Built on Atomic Services - Perform more complex tasks - Examples - Automated resource discovery - Cross-identifications - Photometric redshifts - Outlier detections - Visualization facilities - Goal: - Build custom portals in days from existing building blocks (like today in IRAF or IDL) # SkyQuery (http://skyquery.net/) - Distributed Query tool using a set of services - Feasibility study, built in 6 weeks from scratch - Tanu Malik (JHU CS grad student) - Tamas Budavari (JHU astro postdoc) - With help from Szalay, Thakar, Gray - Implemented in C# and .NET - Allows queries like: ``` SELECT o.objId, o.r, o.type, t.objId FROM SDSS:PhotoPrimary o, TWOMASS:PhotoPrimary t WHERE XMATCH(o,t)<3.5 AND AREA(181.3,-0.76,6.5) AND o.type=3 and (o.I - t.m_j)>2 ``` # Summary - Image DBs are BIG! - 1\$/GB disk, 1\$/GB networking - Put everything in the database - Makes management easy - Makes it easy to find things (via a web service) - Impedance mismatch is going away with infosets/datasets - Web services - Services publish data, Portals unify it - Easy to build & deploy. Tools really work! (I'm using C# and foundation classes of VisualStudio.Net, a great! Tool) - Many clients are Emacs/Python/Perl/Java on Linux (that's the astronomy culture) - A nice book explaining the ideas: (.Net Framework Essentials, Thai, Lam isbn 0-596-00302-1) # Working Cross-Culture How to design the database: Scenario Design - Astronomers proposed 20 questions - Typical of things they want to do - Each would require a week of programming in tcl / C++/ FTP - Goal, make it easy to answer questions - DB and tools design motivated by this goal - Implemented utility procedures - JHU Built Query GUI for Linux /Mac/.. clients #### The 20 Queries - Q1: Find all galaxies without unsaturated pixels within 1' of a given point of ra=75.327, dec=21.023 - Q2: Find all galaxies with blue surface brightness between and 23 and 25 mag per square arcseconds, and -10<super galactic latitude (sqb) <10, and declination less than zero - Q3: Find all galaxies brighter than magnitude 22, where the local extinction is >0.75 - Q4: Find galaxies with an isophotal surface brightness (SB) larger than 24 in the red band, with an ellipticity>0.5, and with the major axis of the ellipse having a declination of between 30" and 60" arc seconds. - Q5: Find all galaxies with a deVaucouleours profile (r^{1/4} falloff of intensity on disk) and the photometric colors consistent with an elliptical galaxy. The deVaucouleours profile - Q6: Find galaxies that are blended with a star, output the deblended galaxy magnitudes. - Q7: Provide a list of star-like objects that are 1% rare. - Q8: Find all objects with unclassified spectra. - Q9: Find guasars with a line width >2000 km/s and 2.5<redshift<2.7. - Q10: Find galaxies with spectra that have an equivalent width in Ha >40Å (Ha is the main hydrogen spectral line.) - Q11: Find all elliptical galaxies with spectra that have an anomalous emission line - Q12: Create a grided count of galaxies with u-g>1 and r<21.5 over 60<declination<70, and 200<right ascension<210, on a grid of 2', and create a map of masks over the same grid. - Q13: Create a count of galaxies for each of the HTM triangles which satisfy a certain color cut, like 0.7u-0.5q-0.2i<1.25 && r<21.75, output it in a form adequate for visualization. - Q14: Find stars with multiple measurements and have magnitude variations >0.1. Scan for stars that have a secondary object (observed at a different time) and compare their magnitudes. - Q15: Provide a list of moving objects consistent with an asteroid - Q16: Find all objects similar to the colors of a quasar at 5.5<redshift<6.5. - Q17: Find binary stars where at least one of them has the colors of a white dwarf - Q18: Find all objects within 30 arcseconds of one another that have very similar colors: that is where the color ratios u-g, g-r, r-l are less than 0.05m. - Q19: Find guasars with a broad absorption line in their spectra and at least one galaxy within 10 arcseconds. Return both the quasars and the galaxies. - Q20: For each galaxy in the BCG data set (brightest color galaxy), in 160<right ascension<170, -25<declination<35 count of galaxies within 30, of it that have a photoz within http://www.sdss.jhu.edu/ScienceArchive/sxqt/sxQT/65amalealQueries.html Also some good queries at: # Two kinds of SDSS data in an SQL DB (objects and images all in DB) 100M Photo Objects ~ 400 attributes A00K Spectra with ~30 lines/ spectrum # Q15: Fast Moving Objects Find near earth asteroids: ``` SELECT r.objID as rId, g.objId as gId, dbo.fGetUrlEq(q.ra, q.dec) as url FROM PhotoObj r, PhotoObj q WHERE r.run = g.run and r.camcol=g.camcol and abs(g.field-r.field)<2 -- nearby -- the red selection criteria and ((power(r.q r, 2) + power(r.u r, 2)) > 0.111111) and r.fiberMag r between 6 and 2\overline{2} and r.fiberMag r < r.fiberMag and r.fiberMag r < r.fiberMag i and r.parentID=0 and r.fiberMag r < r.fiberMag u and r.fiberMag r < r.fiberMag z and r.isoA r/r.isoB r > 1.5 and r.isoA r>2.0 -- the green selection criteria and ((power(q.q q, 2) + power(q.u q, 2)) > 0.111111) and q.fiberMaq q between 6 and 22 and q.fiberMaq q < q.fiberMac and q.fiberMag q < q.fiberMag i and g.fiberMag g < g.fiberMag u and g.fiberMag g < g.fiberMag and g.parentID=0 and g.isoA g/g.isoB g > 1.5 and g.isoA g > 2. -- the matchup of the pair and sqrt(power(r.cx -q.cx,2)+ power(r.cy-q.cy,2)+power(r.cz-q.c and abs(r.fiberMag r-g.fiberMag g) < 2.0 ``` - Finds 3 objects in 11 minutes - (or 52 seconds with an index) - Ugly, but consider the alternatives (c programs and files and time...) # Performance (on current SDSS data) 1E+7 1E+6 1E+5 1E+3 5 1E+4 cpu vs IO ~1,000 IO/cpu sec ~ 64 MB IO/cpu sec - Run times: on 15k\$ HP Server (2 cpu, 1 GB, 8 disk) - Some take 10 minutes - Median ~ 22 sec. - Ghz processors are fast! - (10 mips/IO, 200 ins/byte)